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OPTIMAL CONTROL PROBLEMS AS EQUIVALENT LAGRANGE PROBLEMS

Stephen K. Park

SUMMARY

Herein a method is described by which an optimal control problem
with a compact, connected control region may be transformed into what
is called a Y—equivalent Lagrange problem in the calculus of variations.
The notion of Y—-equivalence is explained and a condition sufficient to
guarantee the Y—equivalence of two problems is stated. In particular, it
is shown that an optimal control problem with a closed parallepiped control
region can, after an appropriate transformation, always be treated as a

Lagrange problem. _




The following discussion assumes the knowledge of some basic topics r
in the theory of functions of several variables - forrgxample, portions of
the material contained in reference 1, chapters I through IV, and reference
2, chapters I and II.

For any positive integer ¥ let EY denote the euclidean r-space and
let n and m be fixed positive integers. Suppose also that fixed points
%0 = (xg, cees xg) and xl! = (xi, cens x;) are given in E® along with a
compact (i.e., closed and bounded) and connected region U in . We
will first state a rather general optimal control problem and then discuss
a method which enables us to formulate this problem as an equivalent
classical Lagrange problem. This method provides a means of applying the
standard tools of the calculus of variations to obtain solutions of the
optimal control problem.

Suppose the real valued functions 8os Bys -++» 8, are ¢l (reference
1, p. 41) on E® x V where V is some open subset of ol containing U.
This is sufficient to guarantee that corresponding to each piecewise con-
tinuous control function u = (u;, ..., um) with u(t) ¢ U there exists
(locally) a unique piecewise smooth trajectory x = (Xl’ ey xn) (see,

for example, reference 3) satisfying

x(t) = gx(t),ult)) 1

where g = (gl’ ey gn), x = %%, and x(to) = %0, If in addition there

exists a t, >t (i.e. terminal time) such that the trajectory x satisfies
(1) on [to, tl] and X(tl) = x! then the control function u is said to
be admissable. (The definition of an admissable control is not standardized

- see reference 4, p. 10, reference 5, p. 278, reference 6, p. 225 — the

difference being whether or not the associated trajectory is required to '




arrive at the terminal point x! for some terminal time tl.) Let QI

denote the set of admissable control functions and with the function g9

define a functional

t

Jlul = f T gy x(s), u(s))ds (2)
t
Q

on the set Notice that without loss of generality we may consider =

I*

to be fixed (reference 4, p. 16) but that ¢t in general, depends on u.

1’
The optimal control problem comnsidered, henceforth refered to as Problem I,
is as follows: To find an (optimal) u ¢ QI such that J[u] f_J[Ei for

all u e QI. In all that follows, to avoid so-called vacuous arguments,
assume that Problem I has at least one admissable control, i.e., that the
set QI is not empty.

To formulate Problem I as an equivalent Lagrange problem, let us suppose
there exists a positive integer p and a ¢l function P o= (wl, oo wm)
which maps EP onto U i.e., Y: EP > U with w(Ep) = U. The question of

the existence of such a function will be considered later. 1In terms of ¢

define new functions f£

0° n
fi(x, z)r= gi(x, P(z)) i=0,1, 2, ..., n 3)
where X ¢ En, z € EP. The functions f0 and f = (fl’ esey fn) then are
¢l on E x EP. Define QII as the set of all piecewise continuous

functions z = (zl, oy zp) (i.e. z(t) € EP) such that there exists a

terminal time tl > t0 and an associated (unique) trajectory x* =

(XT, cees xg) satisfying x*(to) = x0, x*(tl) =x! and

x*(t) = £ *(®), z(r)) (4)

on [to, tl]. This defines the functional




&

flal = [ 1 6%, 2(a))ds ©) :

t0
on QII and what will be refered to as Problem IT may now be stated as i
follows: To find a 2z ¢ Q1 such that I[z] 5_1[;] for all z ¢ Qry-

It should be mentioned that the definition of QI (or QII) contains the
implicit assumption that t, is the first time (> to) for which

x(tl) =xl (or x*(tl) = x1).

Now Problem II may be viewed as an optimal control problem with the
(open) control region EP and the set of admissable control functions Qrq-
However, with essentially no more than a change of notation, it may also be
viewed as a classical Lagrange problem in the calculus of variations.
Hereafter the latter viewpoint will be adopted. Before analyzing Problem TII
as a Lagrange problem, let us first define the previously mentioned concept
of equivalence, then explain the significance of this concept, and finally
state and prove a theorem which gives a condition that is sufficient to
guarantee this equivalence.

Definition: Problem II will be said to be y-equivalent to Problem I if

(a) there exists a solution to Problem I, say u ¢ QI with terminal
time tos if and only if there exists a solution to Problem II, say z ¢ Q

1T

with terminal time tII’

(b) in addition tr = top and,

(c) ¢ (z(®)) =u(t) for all t ¢ [EO, t;] where t, = tI = tII'
From a practical standpoint the importance of this definition lies
in the fact that when Problem IT is y~equivalent to Problem I the following

is true. From condition (a) if Problem I has a solution then by necessity

there exists a solution to Problem II, and hence this solution (to Problem II)

must satisfy all the necessary conditions of the calculus of variations and "




be related to the solution of Problem I by condition (c¢). Furthermore, if

we can construct for Problem II a function =z ¢ QII which satisfies an appro-

priate sufficiency condition of the calculus of variations then we can conclude
that the function u given by u(t) = p(z(t)) is an optimal control for
Problem I. In other words, rather than directly attempting to solve Problem
I, we may instead construct an appropriate ¢ function and hence an equivalent
Problem TI. If Problem I has a solution we are assured Prcoblem IT does also
and by solving Problem IT we have at the same time (to within a transformation)
solved Problem I. TLoosely speaking, this procedure amounts to a 'change of
variagbles" in the control space and is analogous to the familiar change of
variables technique in integration theory.

In order to determine a condition sufficient to guarantee that Problem IT

is Y-equivalent to Problem I, let us recall the definitions of QI and QII'

In particular note that corresponding to each admissable control function

u e QI there exists the following:

(I-1) a terminal time tI >ty

(I-2) a unique trajectory x (equation (1)),
(I-3) a real number J[u] C(equation (2)).

Similarly, to each =z & Q there corresponds:

I

(II1-1) a terminal time typ > s

*

(I1-2) a unique trajectory x (equation (4)),

(II-3) a real number I[z] (equation (5)).

The following lemma justifies the previous observation concerning a 'change

of variables" in the control space.

Lemma 1: If u e QI’ z g and w(z(t)> = u(t) on [to,

IT

where t s = minimum {tI, tII} then




(1) tmin

(2) =x(t) x*(t) on [tO’ tmin]

(3) I[z] = J[ul.

Proof: On [t;, t . 1 x*(t) = £&*(t), 2(£)) and %(t) = gx(t), u(e)).

Therefore since x*(to) =x0 = x(to) and since £(x*(t), z(t))
g(x*(t), u(t)) it follows from the uniqueness of the trajectories that

% = 1 * =
x*(t) x(t) on [to, tmin]' In particular x (tmin) X(tmin) hence

. . % -1 . ; = %1
tI < tII implies x (tI) = x Whlle tII < tI 1mpl;es x(tII) xi, In

either case this contradicts the assumption that ty and typ are the first

i * i = = - -
terminal times for x and x respectively. Thus tI tII tmin' Finally

t1
Jlul J go(x(s), u(s)) ds
fO(X(S), z(s)) ds

therefore since tI = tII x(t) = x¥(t) we have

t
- J L £ (x*(s), 2(s)) ds

£

J[u]
and this establishes the lemma.
If the functions u and 2z satisfy the hypothesis of lemma 1, it

is valid to speak of a single common terminal time ¢t trajectory x,

l!
and functional value (i.e. I[z] = J[ul]) associated with u and =z.

Furthermore, the notation y(z(t)) = u(t) for t e [to, tl] is unnecessary
and we will simply write ez = u (reference 2, p. 9). Finally, it should

be noted in passing that from lemma 1, conditions (a) and (¢) of the

definition imply (b).




Denote by ¢[QII] the set of functions u such that u = yoz for

some z g i.e. if u e w[QII] then there exists a z ¢ QII with

IT

terminal time trr such that u(t) = ¢(z(t)) on [tO’ tIII' In terms of

p[2;;] one has the following theorem.

-

Theorem 1: If ¢[QII] = Q then Problem II is y—equivalent to Problem I.

1
Proof: TLet u ¢ QI be a solution to Problem I. By hypothesis there
exists a z ¢ QII such that ez = u. Consider any z* ¢ QII and there

exists a u* ¢ Q7 with yoz® = u®. Since u is a solution J[ul < J[u*]

and thus from lemma 1 I[z] i_I[z*] i.e., z 1s a solution to Problem II.
Similarly if z ¢ QII is a solution to Problem II then there exists
a ue QI such that ez = u and as before J[ul S_J{u*] for any u® ¢ Q-
" From the remarks following lemma 1 condition (b) of the definition is satis—
fied in each case and this establishes the theorem.
Consider z ¢ QII with terminal time ty and trajectory x. Since ¢
is continuous the function u = Yoz is piecewise continuous and u(t) ¢ U.
Furthermore since x(to) = x0, X(tl) =x! and ﬁ(t) = f(x(t), z(r)) =
gx(t), u(t)) we have u = Yoz ¢ QI. That is, independent of whether or
not Problem II is YP—equivalent to Problem I, the following is true:
Lemma 2: y[Q .1 C Q.
Therefore to show that Problem IT is yY—equivalent to Problem I it
is only necessary to show that w[QII]ZD QI i.e. that if u ¢ QI there
exists a z ¢ QII such that ¢°z = u. In general the topological question

of the existence of 2z is a very difficult one and depends strongly upon

the nature of ¢ and U. However for the particular case where it is

1
possible to choose p =m (i.e. to find a C function ¢ mapping E-
onto U CiEm) the existence of 2z 1is rather easily established. This

case is treated in the following lemma.




Lemma 3: 1If there exists a compact connected set A.CLEm such that

the restriction of ¢ to A, denoted wIA, satisfies

-n

(1) ¢lA is one-to-one

(2) ¢|A maps A onto U
then 1p[QII] D) QI.

Proof: Purely for notational purposes let ¢ = P|A. Since ¢ is
continuous and one-to-one there exists a continuous inverse ¢—1: U->A
(reference 2, p. 10). Consider a function u ¢ QI with trajectory x and

1

terminal time t; and define a function z = ¢ "ou. Now z is piecewise

continuous with =z(t) £ A hence oz = ¢°z = ¢°¢_1°u = u. Since x(to) = x0,

Il

x(t;) = x1 and x(t) = g(x(t), u(t)) = £(x(t), z(t)) it follows that

z € Qrp and hence the lemma has been proved.

Rather than continuing to pursue the problem in full generality let us
consider the (mathematically) simpler case of Problem I with a control region

U consisting of—all vectors u = (u,, ..., u) such that a, <u, <b
1 m - -~

i

i
where a;, bi (bi > ai) are arbitrary real numbers for i =1, 2, ..., m.

i

The parallelepiped U corresponds physically to a control system in which
the m controllers are free to move independently (of each other) within
a range determined by the upper and lower bounds bi’ a; - a situation
which is of extreme importance in applications. By virtue of lemma 3

the problem of constructing the ¢—-function (when U is a parallelepiped)
becomes almost trivial. Temporarily, for purposes of discussion, suppose U
is the one-dimensional interval [a, bl then A must also be an interval,

say [c, d]l. On [ec, d]l ¢ must be one-to-one, onto, and Cl and hence

it must be strictly monotone. The derivative of ¢ must vanish at ¢ and

d and ¢(c) = a, (@ =b (or () =b, y(d) = a). An obvious choice




of a function which has exactly these properties is y{x) = 5

b-a

sin x +-E%§

with A = [- %j T3], We can immediately generalize this idea to the previous

2

case where

<b i=1, 2, «v., m}

and consider 1y = (¢1, oo wm) defined by

bi - a; bi + ai
¢i(z) =—5— sin z, +————7f——— i

1, 2, e, m
1 ., . . m
where =z ¢ E . In addition define A CE as

A= {(zl, aees zm): - %—f-zi 5_%— i=1,2, ..., m}

(6)

¢

Clearly ¢ and A satisfy the hypothesis of lemma 3. Summarizing

the results of theorem 1 and lemmas 2 and 3 we have the following.

Theorem 2: If Problem T has the parallelepiped control region U

given by (6) then Problem II as defined by (3) and (5) is y-equivalent

to Problem I where ¢ dis given by (7).

In order to illustrate the concepts discussed to this point -

particularly theorem 2 — let us comnsider a standard example of a comntrol

problem. In this example we will construct a P~equivalent problem

(Problem IT) and later, after discussing, in general, problem II as a

Lagrange problem, apply the results of this discussion to the example.

Example: The linear time optimal problem (see reference 4, chapter III).

0 1

Consider problem I with x and x fixed and
go(x,u) = 1
) 1
g.(x,u) = o, . + B.. u i=1,2, .oy n
1 5 =1 iy J 3=1 13 1




and for simplicity take a, = -1, bi =1 (i.e. -1 <uy < 1) for

i=1,2, «ivoy, m. Thus ¢ = (wl, ey wm) becomes ¢i(z) = gin z for

i
i=1, 2, ..., m and the yYy—-equivalent problem IT becomes: To find a £
piecewise continuous function 2z = (Zl’ ceey zm) and a corresponding

piecewise smooth function x = (Xl’ ooy xn) which together satisfy

. n m
X, = 2 o, . Xj + X B.. sin z, i=1, 2, ..., n

the end conditions

»

x(to) = %9, x(tl) =

and minimize the integral

31
dt = t, - t
ty

for some t; > t,. We will return to this example shortly.

Following the original formulation of Problem II (see equations (3)
and (5)) it was stated that Problem II is, with a change of notation, a
Lagrange problem. In particular it is the following Lagrange Problem:
To find a piecewise smooth vector function y = (yl, cers Yos Yogqs v

yn+p) which satisfies the constraint equations

yi— fi (Yl, st yns yn+l’ ceey yn+-p) =0 i=1,2, ...y n

the boundary conditions
yi(to) = xg yi(tl) = x% i= l? 2, vee, M

yn&j(to) =0 yn+j(tl) - free =1, 2, cie, P

and minimizes the integral .

t

1 . .

Jt fo(yl, cees Yoo Vg2 eees yn+p) de .
0

10




The change of notation involved is nothing more than

for some t, > t

0*

=y. for i=1, ..., n and z. for =1, 2, ..., P.

X i - ] - yn%j

Whether one chooses éo consider Problem II in terms of the (x, z) formulation
or the y formulation is purely a matter of taste. In either case by
applying the results of, for example, references 5, 6, and 7 the following
fundamental set of necessary conditions (in (x,z) notation) may be obtained.

Theorem 3: If z e QII is a solution to Problem II with corresponding
trajectory x and terminal time t; it is necessary that there exist a
sectionally smooth vector function A = (Al, ey Xn) and a scalar Ao <0
such that for each ¢t ¢ [to’ tll

M) (s AB) # (0,0)
@ () = %%;- (x(c), 2(6), A(E)) 1=1,2, ..., n
A () = - %5;— (), 2(e), A(®))  i=1,2, c.e, n

(3) H(x(t), &, A(t)) < H(x(t), z(t), A(t)) for all & e EF

(4) H&(@E), z(8), A (E)) =0

9H
9z,
i

(5

=), z(t), A(x)) =0 i=1,2, veo, P

where H(x, z, A) =

I o~13

A, £, (x, 2)
o 171

i

Theorem 3 is an immediate consequence of the multiplier rule, the
corner conditions, the transversality conditions, and the Weierstrass
condition. The first four conditions are the usual maximum principle

and condition (5) are the Mayer equations pertaining to (§n+l’ ey

§n+p) and the corresponding transversality conditions. The advantage

of condition (5) is that the determination of z(t) (and hence u(t))

has been reduced to the problem of algebraically solving the p

11




equations sg—-= 0. This is illustrated nicely by considering the ‘

previous example for which (recall m = p)

H(x,z,A) = AO +

it~

n
. Z . aijxjki +

o~

i

e

oH
3z . (X,Z,}\.) = .
1 1

It~
w
,—'
[
>
(¢
0
®
N
[t
I\
l—l
-
¥
-
.
.
=}

and thus for all t

n
[iz L Bij Ai (t) cos zj (t) =0 j=1,2, ..., m

The fact that

I~

Bij Ai(t) cannot be zero at more than a finite number
i 1

of t's in [to, tl] follows (if the so-called general position condition
holds (reference 4, p. 116)) from the analyticity of A (see reference 4,

p. 118). Hence, cos zj (&) =0 (=1, 2, ..., m) except perhaps for a

finite number of t's and thus zj(t) + %— i.e. uj(t) = w(zj(t)) =+1
which is the familiar bang-bang principle.

There has been a vast amount of research in the calculus of variations
and there is an obvious need to determine what portions of this research has
application in the theory of optimal control, (reference 6 contains much of
the work done along this line). It is generally recognized that optimal
control problems (of the type considered herein) with open control regions
can be viewed as Lagrange problems (see reference 4, Chap. V). However,
if one is faced with a closed control region, as is almost always the case,
it is mot at all obvious what, if any, results from the calculus of variation

may be directly applied to the problem. The significance of the ideas dis-

cussed in this paper is that, at least when U is compact and connected, a .

12




very straight-forward method is available for transforming an optimal
control problem into a Lagrange problem that is yY—~equivalent to it. In
addition any information obtained about a solution of the Lagrange problem
may be immediately related to information about an optimal control for

the control problem.

13
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